Dynamical Casimir effect via timedependent conductivity in the MIR experiment

Diego A. R. Dalvit
Theoretical Division-Los Alamos National Laboratory

Reference: M. Crocce, D.D, F. Lombardo and F. Mazzitelli, quant-ph/0404135

Non trivial structure of quantum vacuum

Resonant photon creation in oscillating high-Q cavities

Very high oscillation frequencies

 $\Omega_{\rm mech} \simeq {\rm GHz}$

Too high to be achieved with a purely mechanical oscillation

MIR experiment

Ultra short laser pulses periodically irradiated on a semiconductor slab

Effective microwave mirror swichted on and off at very short intervals of time

The model
$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{V(t)}{2} \delta(x - L_x/2) \phi^2$$

Eq. of motion
$$(\nabla^2 - \partial_t^2)\phi = V(t)\delta(x - L_x/2)\phi$$

$$lue{f lue{f en eta}}}}}}$$

disc
$$\partial_x \phi = V(t)\phi(x = L_x/2, t)$$

Time-dependent conductivity

$$V(t)$$
 $\left\{ egin{array}{ll} V
ightarrow 0 & ext{`transparent' material} \ V
ightarrow \infty & ext{perfect conductor} \end{array}
ight.$

Electromagnetic analogue [Barton+Calogeracos, Ann. Phys. 238, 227 (1995)]

Plane-polarized electromagnetic radiation propagating normally to an infinitesimally thin plasma sheet

$$E_y = -\partial_t A_y$$
 $B_z = (\nabla \times \mathbf{A})_z = \partial_x A_y$

Eq. of motion
$$(\partial_x^2-\partial_t^2)A_y=0$$

Eq. of motion
$$(\partial_x^2 - \partial_t^2) A_y = 0 \qquad \qquad m \, \partial_t^2 \eta = -e \, \partial_t A_y (x = L_x/2)$$

Boundary conditions

$$\operatorname{disc} A_y = 0$$

$$\operatorname{disc} \partial_x A_y = -4\pi j_y = -4\pi n_s \, e \, \partial_t \eta$$

$$\mathbf{\hat{f}}$$
 Surface current density

Lateral displacement of charge carriers

$$\phi \leftrightarrow A_y/\sqrt{4\pi}$$

$$V \leftrightarrow 4\pi \, n_s \, e^2/m$$

Two sets of solutions:

 $arphi_{\mathbf{m}}(\mathbf{x})$ have a node at $x=L_x/2$ and do not see V(t)

$$\psi_{\mathbf{m}}(\mathbf{x},t) = \sqrt{\frac{2}{L_x}} \sin(k_{m_x}(t)x) \frac{2}{\sqrt{L_y L_z}} \sin\left(\frac{\pi m_y y}{L_y}\right) \sin\left(\frac{\pi m_z z}{L_z}\right)$$

$$-\frac{2k_{m_x}(t)}{V(t)} = \tan\left(\frac{k_{m_x}(t)L_x}{2}\right)$$

For $t \leq 0$ the semiconductor slab is not irradiated, so $V(t \leq 0) = V_0$

$$u_{\mathbf{m}}(\mathbf{x},t) = \frac{e^{-i\tilde{\omega}_{\mathbf{m}}t}}{\sqrt{2\tilde{\omega}_{\mathbf{m}}}}\psi_{\mathbf{m}}(\mathbf{x},0) \qquad \qquad \tilde{\omega}_{\mathbf{m}}^2 = (k_{m_x}^0)^2 + \left(\frac{\pi m_y}{L_y}\right)^2 + \left(\frac{\pi m_z}{L_z}\right)^2$$

For $t \geq 0$ the slab is irradiated, so V o V(t) and $k_{m_x} o k_{m_x}(t)$

Expansion in instantaneous modes: $u_{\mathbf{s}}(\mathbf{x}, t > 0) = \sum_{\mathbf{m}} P_{\mathbf{m}}^{(\mathbf{s})}(t) \, \psi_{\mathbf{m}}(\mathbf{x}, t)$

$$\ddot{P}_{\mathbf{n}}^{(\mathbf{s})} + \omega_{\mathbf{n}}^{2}(t)P_{\mathbf{n}}^{(\mathbf{s})} = -\sum_{\mathbf{m}} \left[\left(2\dot{P}_{\mathbf{m}}^{(\mathbf{s})}\dot{k}_{m_{x}} + P_{\mathbf{m}}^{(\mathbf{s})}\ddot{k}_{m_{x}} \right) g_{\mathbf{m}\mathbf{n}}^{(A)} + P_{\mathbf{m}}^{(\mathbf{s})}\dot{k}_{m_{x}}^{2} g_{\mathbf{m}\mathbf{n}}^{(B)} \right]$$

simple functions of $\psi(\mathbf{x},t)$

Resonant photon creation

We focus on resonant effects induced by periodic oscillations in the conductivity

$$V(t) = V_0 + (V_{\text{max}} - V_0) f(t)$$

$$f(0) = 0$$
$$f(\tau_e) = 1$$

$$f(t) = f_0 + \sum_{j=1}^{\infty} f_j \cos(\Omega_j t + c_j) \qquad \Omega_j = j \frac{2\pi}{T}$$

$$\Omega_j = j \, \frac{2\pi}{T}$$

Perturbation theory: When $V_0L_x\gg V_{\rm max}/V_0>1$ large changes in the conductivity induce small changes in the frequencies of the modes. We employ perturbation in ϵ_n

$$k_n(t) = k_n^0 (1 + \epsilon_n f(t))$$
 $\epsilon_n = \frac{V_{\text{max}} - V_0}{L_x(k_n^0)^2 + V_0 \left(1 + \frac{V_0 L_x}{4}\right)} \ll 1$

The modes are a set of coupled harmonic oscillators with periodic frequencies and couplings

$$\ddot{P}_{\mathbf{n}}^{(\mathbf{s})} + \tilde{\omega}_{\mathbf{n}}^{2} P_{\mathbf{n}}^{(\mathbf{s})} = -2\epsilon_{n} (k_{n}^{0})^{2} (f - f_{0}) P_{\mathbf{n}}^{(\mathbf{s})} - \sum_{\mathbf{m}} \left[2\dot{P}_{\mathbf{m}}^{(\mathbf{s})} \dot{f} + P_{\mathbf{m}}^{(\mathbf{s})} \ddot{f} \right] \epsilon_{m} k_{m}^{0} g_{\mathbf{m}\mathbf{n}}^{(A)} + \mathcal{O}(\epsilon^{2})$$

Similar to egns for scalar field modes in 3D cavity with oscillating boundary

is a renormalized frequency,
$$\tilde{\omega}_{\mathbf{n}}^2 = (\tilde{k}_n^0)^2 + (\pi n_y/L_y)^2 + (\pi n_z/L_z)^2 \qquad \qquad \tilde{k}_n^0 \equiv k_n^0 (1 + \epsilon_n f_0)$$

$$\tilde{k}_n^0 \equiv k_n^0 (1 + \epsilon_n f_0)$$

Parametric resonance: $\tilde{\omega}_{\mathbf{n}} \leftrightarrow \Omega_{j}$

- In the resonant case, a naive perturbative solution of the mode equations in powers of ϵ_n breaks down after a short amount of time, of order $\epsilon_n^{-1} \, \Omega_j^{-1}$
- Multiple scale analysis esummation of the perturbative series
 - solution valid for longer times, of order $\epsilon_n^{-2} \, \Omega_j^{-1}$

new time scale: $au_n \equiv \epsilon_n t$

$$P_{\mathbf{n}}^{(\mathbf{s})}(t) = P_{\mathbf{n}}^{(\mathbf{s})(0)}(t, \tau_n) + \epsilon_n P_{\mathbf{n}}^{(\mathbf{s})(1)}(t, \tau_n) + \mathcal{O}(\epsilon_n^2)$$

- zeroth order: $P_{\mathbf{n}}^{(\mathbf{s})(0)} = A_{\mathbf{n}}^{(\mathbf{s})}(\tau_n)e^{i\tilde{\omega}_{\mathbf{n}}t} + B_{\mathbf{n}}^{(\mathbf{s})}(\tau_n)e^{-i\tilde{\omega}_{\mathbf{n}}t}$
- $\text{first order:} \quad \partial_t^2 P_{\mathbf{n}}^{(\mathbf{s})(1)} + \tilde{\omega}_{\mathbf{n}}^2 P_{\mathbf{n}}^{(\mathbf{s})(1)} = -2 \partial_{t\tau_n}^2 P_{\mathbf{n}}^{(\mathbf{s})(0)} 2 (k_n^0)^2 (f f_0) P_{\mathbf{n}}^{(s)(0)} \sum_{\mathbf{m}} \frac{\epsilon_m}{\epsilon_n} g_{\mathbf{mn}}^{(A)} \left[2 \partial_t P_{\mathbf{m}}^{(\mathbf{s})(0)} k_m^0 \dot{f} + P_{\mathbf{m}}^{(\mathbf{s})(0)} k_m^0 \ddot{f} \right]$
 - Key idea of MSA: avoid secularities by imposing that any term $e^{\pm i \tilde{\omega}_{n} t}$ in the RHS vanishes

$$\Omega_j = 2\,\tilde{\omega}_{\mathbf{n}}$$

$$\Omega_j = |\tilde{\omega}_{\mathbf{n}} \pm \tilde{\omega}_{\mathbf{m}}|$$

$$\frac{dA_{\mathbf{n}}^{(\mathbf{s})}}{d\tau_{n}} = 2\sum_{j} f_{j} \left\{ -\frac{(k_{n}^{0})^{2}}{4i\tilde{\omega}_{\mathbf{n}}} B_{\mathbf{n}}^{(\mathbf{s})} e^{ic_{j}} \delta(2\tilde{\omega}_{\mathbf{n}} - \Omega_{j}) - \sum_{\mathbf{m}} \frac{\epsilon_{m}}{\epsilon_{n}} \frac{\Omega_{j}}{4i\tilde{\omega}_{\mathbf{n}}} g_{\mathbf{m}\mathbf{n}}^{(\mathbf{A})} k_{m}^{0} \left[(-\frac{\Omega_{j}}{2} - \tilde{\omega}_{\mathbf{m}}) A_{\mathbf{m}}^{(\mathbf{s})} e^{ic_{j}} \delta(\tilde{\omega}_{\mathbf{n}} - \tilde{\omega}_{\mathbf{m}} - \Omega_{j}) + (-\frac{\Omega_{j}}{2} + \tilde{\omega}_{\mathbf{m}}) A_{\mathbf{m}}^{(\mathbf{s})} e^{ic_{j}} \delta(\tilde{\omega}_{\mathbf{n}} - \tilde{\omega}_{\mathbf{m}} - \Omega_{j}) \right] \right\}$$

$$\frac{dB_{\mathbf{n}}^{(\mathbf{s})}}{d\tau_n} = (\text{RHS})^* \text{ with } A_{\mathbf{n}}^{(\mathbf{s})} \leftrightarrow B_{\mathbf{n}}^{(\mathbf{s})}$$

Resonance conditions:

$$\Omega_j = 2\,\tilde{\omega}_{\mathbf{n}}$$

$$\Omega_j = |\tilde{\omega}_{\mathbf{n}} \pm \tilde{\omega}_{\mathbf{m}}|$$

- The eigenfrequencies $\tilde{\omega}_{\mathbf{n}}$ are not equidistant In general, when $(j,\mathbf{m},\mathbf{n})$ satisfy RC, then $(j',\mathbf{m}',\mathbf{n}')$ do not
 - \longrightarrow single Fourier mode $f(t) = f_0 + f_j \cos(\Omega_j t + c_j)$
- Parametric resonance case: $\Omega_j = 2\, ilde{\omega}_{f n}$
 - In general, there will be no mode coupling \longrightarrow $g_{\mathbf{mn}}^{(A)}=0$
 - $\frac{dA_{\mathbf{n}}^{(\mathbf{s})}}{d\tau_n} = i \frac{(k_n^0)^2 f_j e^{ic_j}}{\Omega_j} B_{\mathbf{n}}^{(\mathbf{s})} \qquad \frac{dB_{\mathbf{n}}^{(\mathbf{s})}}{d\tau_n} = -i \frac{(k_n^0)^2 f_j e^{-ic_j}}{\Omega_j} A_{\mathbf{n}}^{(\mathbf{s})}$
 - Mean number of created photon with frequency $\tilde{\omega}_{\mathbf{n}} = \Omega_j/2$

$$\langle \mathcal{N}_{\mathbf{n}}(t) \rangle = \sum_{\mathbf{s}} 2\tilde{\omega}_{\mathbf{n}} |A_{\mathbf{n}}^{(\mathbf{s})}(t)|^2 \approx \sinh^2 \left(\frac{(k_n^0)^2 f_j}{\Omega_j} \epsilon_n t \right)$$

exponential growth at a rate $r_{\mathrm{cond}} = 2(k_n^0)^2 f_j \epsilon_n/\Omega_j$

Numerical estimations

- Typical values of the conductivity $V(t)=rac{4\pi e^2}{m}\,n_s(t)$
 - Slab not illuminated \longrightarrow semiconductor \longrightarrow $V_0 = 10^8 \mathrm{m}^{-1} 10^{13} \mathrm{m}^{-1}$
 - Slab illuminated \longrightarrow good conductor \longrightarrow $V_{\text{max}} = 10^{16} \text{m}^{-1}$
- Small parameter $\epsilon_n:~10^{-8} \le \epsilon_n \le 10^{-2}$ for a cavity of size $L_x \simeq 10^{-2} \, \mathrm{m}$
- Profile example for the conductivity: linear ramps $V(t) = V_0 + (V_{\rm max} V_0)f(t)$

$$f_j = \frac{1}{\pi j (1 - \tau_e/T)} \frac{\sin(\pi j \tau_e/T)}{\pi j \tau_e/T} \approx \begin{cases} 1/\pi j & \text{if } \Omega_j \tau_e \ll 1\\ T/\tau_e j^2 \pi^2 & \text{if } \Omega_j \tau_e \gg 1 \end{cases}$$

- Rate of photon creation: $r_{
 m cond}=\epsilon_n/T$ for $\Omega_j au_e \ll 1$ and $L_y,L_z\gg L_x$. It is independent of j
- Resonant condition: $\Omega_j = 2\pi j/T \approx {
 m GHz}$ It can be achieved with low values of $j \in [1,10]$ with femtosecond lasers w/ repetition freq. $2\pi/T \approx 100 {
 m MHz}$
- Excitation time $\tau_e = 10^{-12} \text{sec} \implies \Omega_j \tau_e \ll 1 \implies 1 \text{Hz} \leq r_{\text{cond}} \leq 10^6 \text{Hz}$

Comparison with the oscillating mirror:

$$r_{
m mov} pprox \epsilon_{
m mov}/T_{
m mov}$$

$$T_{\text{mov}} = 10^{-9} \text{sec}$$

 $\epsilon_{\text{mov}} < 3 \times 10^{-8}$

Ratio of photo-production rates

$$\frac{r_{\rm cond}}{r_{\rm mov}} = \frac{\epsilon_n}{\epsilon_{\rm mov}} \frac{T_{\rm mov}}{T} = 10^6 \frac{T_{\rm mov}}{T} \gg 1$$

$$\epsilon_n \approx 10^{-2}$$
 $\epsilon_{\text{mov}} \approx 10^{-8}$
 $2\pi/T \approx \text{MHz}$

Detuning

In order to have resonant effect, the external frequency must be tuned with the frequency of the resonant mode with a high accuracy.

- Moving mirror case: detuning $\Delta\Omega_{
 m mov}$ igodallow $\Delta\Omega_{
 m mov}/\Omega_{
 m mov}<\epsilon_{
 m mov}$
- MIR experiment case: detuning $\Delta\Omega_j$ \longrightarrow $\Delta\Omega_j/\Omega_j<\epsilon_n$

Since $\epsilon_n \gg \epsilon_{\rm mov}$ fine tuning is much less severe in the MIR experiment

Summary

- Toy scalar model to mimic photon creation by time-dependent, periodical changes in the conductivity
- For changes in the conductivity of up to six orders of magnitude, the modes of the field oscillate with small amplitudes
- Due to the short excitation time of the semiconductor $(\tau_e/T\ll 1)$ it should be possible to tune a cavity mode with a frequency of a high j Fourier harmonic of the time-dependent conductivity
- As long as $j\pi\tau_e/T\ll 1$ it should be possible to produce resonant effects with ultra-short pulses with repetition frequency well below the GHz range
- Advantages: much faster photo-production rates and milder fine tuning problems